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Abstract. We have studied relativistic effects on the tunnelling of electrons through a muiti-
barrier system (MBS) consisting of rectangular barrier potentials, by deriving, for the purpose,
refativisiic formulae for the transmission coefficient and associated relativistic conditions for
resonant wennelling. Among other things, we have discussed critically the quantitative extents of
relativistic impacts on tunnelling through MBss, especially in the context of their measurability.

1. Introduction

During many past decades, several workers have carried out relativistic studies of eiectron
moaotion in one-dimensional (1D) condensed matter in the context of

(i) bulk states of crystalline systems [1-3],
(ii) bulk states and related properties of disordered systems {4-9] and
(iii) surface states [10, 11].

These studies have provided much information on the relativistic impacts of the relevant
issues, which is very valuable from qualitative as well as quantitative viewpoints. Now,
studies of tunnelling through multi-barrier systems (MBSs), especially in the context of
resonant tunnelling, constitute an important facet of condensed-matter physics, theoretically
[12-15] as well as experimentally [16, 17]. So far, the studies of tunnelling through MBSs
have been carried out on a non-relativistic (NR) footing. In view of the fact that relativistic
studies of aspects such as (i}-(iii) have proved quite useful, investigation of relativistic
impacts on tunnelling through MBSs seems worthwhile, and the purpose of this article is to
report an ¢ffort in this direction.

The models treated by us consist of an arbitrary number of rectangular-barrier-type
potentials as shown in figure 1 and the &-function equivalent of the model in figure 1. In
the context of these models, we have derived

(I) the relativistic transmission coefficient (RTC) and the associated conditions for
resonant tunnelling, making use of some aspects (section 2) of the b Dirac equation and
the relativistic transfer matrix,

(II} the shape of the relativistic transmission spectrum (section 3} and

(IIT) the NR counterparts (section 4) of aspects (I) and (II).

To explore the quantitative extents of relativistic impacts on tunnelling through MBSs,
we have carried out (section 5} a numerical analysis in regard to the essential features of
relativistic and NR tunnelling through them. Finally, we have discussed (section 5) critically
our findings in respect of relativistic impacts on tunnelling through MBSs.
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Figure 1. Model of an N -barrier system.

2. Some aspects of the 1D Dirac equation and relativistic transfer matrix

The relativistic treatment of the tunnelling of electrons (with a rest mass m) through a
system such as that in figure | requires the two-component spinor solutions i to the 1D
Dirac equation for a constant potential V. Assuming that the electron moves along the
X-axis, one obtains Y as [18]

i) = A [,_f,]exp(iﬁx) +8 [_'y] exp(—ifix) )
where
B2 = (e—VXe—V+2mc*) /2P € = Eg—mc? y = (e—V)/hcB.

Ey is the relativistic eigenvalue of energy, and A and B are arbitrary constants. In the light
of (1), the spinor v, in the nth zero-potential region of figure I can be written as

U = A, [;} ] exp(iBix) + By [—ly[ ] exp(—ifix)  n=0,1,...,N @)
where

3,2 = (€ + 2mc?) /fzzr:2 y| = efhch.
The region for n = 0 is the zero-potential region to the left of the first barrier and the region

for n = N corresponds to the zero-potential region to the right of the Nth barrier. We now
define the (2 x 2) transfer matrix W%, as

(5]l
It can be shown [9] that

WE = M5 ME @

MY = (F3)"Mg (Fp)" 5

Fo = [exp(iﬁlf) 0 ] f=a+b. ©

0 exp(—if f)
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Mg is the relativistic transfer matrix for a single barrier with its origin on the line of its
symmetry, and it can be obtained as [9, 19]

My (11) = exp(—iB1b) (cosh(nd) + [i(y{¥ — ¢?) /2] sinh(nb) = [Mr(21)]* 7
Mr(12) = —i[(y} + 09 /2y10] sinh(nh) = [Mc21)]* (8)
7=V —e)e = V + 2mc®)/ (he) € <V <e¢+2met o))

o= (V —e)hen.
With the help of (4) and (5), we obtain
Wﬁ(ll) = {{exp(—iNB )1/ (t2 — tOHE [t2 — GRID} — &' [1) — Gr(ID]} = [WEQZ)]*

(10)

Wx(12) = {[exp(—iNB; )1/ (t — t)}E) — t))Gr(12} = [WR D" (11)

detWh=1... (12)

Gr = MiFy. (13)
t; and 1 are eigenvalues of Gg given by

11 = /1y = exp(idg) Idr] < 2 (14)

n=(/n)explgr)  ldal =2 (15)

dr = Tr(Gg) (16

cosbg = idp idr] < 2 (17)

coshgp = 3dx |dr| = 2. (18)

3. Relativistic treatment of tunnelling

3.1. Fornudae for the relativistic transmission coefficient

To derive the formulae for the RTC, we assume the electrons to be incident at the left-hand
end of the chain of barriers in figure 1 along the positive direction of the x axis and to be
transmitted beyond the right-hand end of the chain. The RTC T} is defined as the ratio of
the transmitted relativistic current density JR to the incident relativistic current density JR,
which correspond respectively to the A,- and B,-dependent parts of (2). If we make use of
these spinors, the formula Cyta, ¢ for the relativistic current density, the fact that there
is no reflected current beyond the Nth barrier (i.e. By = 0), and equations (10), (14) and
{15), we obtain the following two forms T and Thy of TH:

TE = 1/{1 + |Mr(I2P[U,(cos )17} drl <2 19)
T = 1/{1 + |IMe(12) [, (¢r)F} jdrl >2 (20)
U,(cosf) = sin[(r + )0e]/sinfy ~ r=N —1 @1
hy (¢r) = sinh[(r + 1)¢r]/ sinh ¢ r=N-1 (22)

and U;(cosdg) is the well known Chebyshev polynomial of the second kind [20].
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3.2. Relativistic condition for resonant tunnelling

As is well known, the transmission coefficient across any system of potential barriers
becomes unity when resonant tunnelling occurs. We can see that relativistic resonant
tunnelling cannot occur at all for |dz| > 2, a condition which is related to Ty; this is
because the entity |Mp(12)|°[#,(¢r)]* in the denrominator of TE, is always greater than
zero. Relativistic resonant tunnelling can occur only for T which corresponds to |dr| < 2.
The condition for resonant tunnelling due to Ty appears as

Uy (cosfg) = 0. (23)

The energies satisfying (23) are those which correspond to |dr] < 2. This condition
corresponds to energies in the allowed bands of an infinite crystal with rectangular-barrier-
type potentials, having a + b as the periodicity, while the condition |dgr| > 2 corresponds to
energies in the forbidden regions of the relativistic band structure of such a system [18,21].
Hence, the energies for which relativistic resonant tunnelling can occur for the model in
figure 1 must necessarily lie within allowed regions of relativistic band structure of the
infinite crystal just mentioned.

3.3. Relarivistic transmission coefficient for the 8-function equivalent of the model in figure 1

It seems worthwhile to compare the RTC of the model in figure 1 with that for its -function
equivalent, which is obtained by setting V — oo, b — 0, such that Vb remains finite and
equals p (say). For this purpose, we need the values T5Y and THQ assumed by 75 and

TR respectively, under the just-mentioned limits with regard to V and b. Explicitly, we
have

TR = 1/{1 + | Mao(12)[*[U, (cos 6} 1} (24)
TR = 1/{1 + | Mro(12) "1, (fr) 1} (25)
cosfro = $dro |drol <2 (26)
cos{¢ro) = 3dro ldrot 2 2 27
Mgo(12) = 8-function limit of Mg(12) = —1i[(1 — y)/»1sin(p/hc) (28)

dgro = 8-function limit of dg = 2cos(Bya) cos(p/he) + {(1 + ylz) /v }sin(Ba) sin(p/he).
29)

3.4. Shape of the relativistic transmission spectrum

As we shall see later, TR, falls sharply with increasing ¢ around the energies ¢; at which

resonant tunnelling occurs. Using this fact, we obtain [14] the RTC T around ¢; as given
below:

TR = 1/{1 + (€ — &)/ Ae, T} 30)
Aeg = {IMg(12)[(d/d dr)[U, (cos Br)1(d/de)(dr) e, - 31)

As can be seen from (30), the shape of the relativistic transmission spectrum is Lorentzian
near the energies €; with 2A¢; as the full width of T,\!}f at €.
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4. Non-relativistic tunnelling

The results for tunnelling of NR electrons through our models can be obtained, without using
an ab-initio treatment, by subjecting our relativistic results to the condition that the velocity
¢ of light goes to infinity. The NR limits iy and Twn, of T3 and Ty, respectively, are
given by

Twe = 1/{1 + M (12)’[U, (cos )1} (32}
Twn = 1/{1+ [M2)*[h: (9)1%) (33)
cosd = 1d ld| <2

coshe = 1d |d] > 2.

d = R limit of dp = 2{cosh(k:b) cos(kia) + [(k3 — K5}/ 2k ky] sinh(kzb) sin(kia)}  (34)
M(12) = NR limit of MR(12) = —i[(k? + k2)/2k kz)/ sinh(k,b) (35)
ki = (1/R)CmEY'? k= (/m)2m(V — E)'? V>E

where £ is the NR eigenvalue of the energy of the electron.
The Nr condition for resonant tunnelling is the NR limit of (23), and it is given by

U,(cos8) =0, (36)

The shape of the NR transmission spectrum around the energies E; at NR resonant
turmelling is the NR limit T}, of T, and it is given by

Tio= 1L+ {E — E)/AE?) (37)
AE; = {|M{12)|X(d/d DU, (cos §)1(d/d E)d)}e=k, (38)

2AE; = full width of Ty at E;.

The NR limits T, and T, of T and TRY, respectively, appear as

Ty = 1/11+ [ Mo(12) U (cos 80) I} (39)
Ton = 1AL+ [Mo(12) [ (¢0) ) (40)
Mg(12) = NR limit of Mgo(12) = —ig {41)
cosfp=3dy  |dol <2 (42)
coshgp = 1dp ldol =2 (43)

dy = 2cos(kia) + 2g sin(k @)

g = mp/i’k,.
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Figure 2. Relativistic and Ne ransmission spectra for (@) 4-function potentials and (b) barrier-
type potentials, The graphs in both (a) and (b) comrespond to N =9, 2 =5 A,V =50eV and
the fourth aliowed band. For graphs in (), b = 0.2 A, For graphs in {2, the parameter p is
the product V& with the values of ¥ and b just mentioned. Resonant tunnelling occurs when
the transmission coefficients become wnity.

5. Results and discussion

As mentioned earlier, we have carried out a pumerical analysis to elucidate the quantitative
extents of relativistic impacts on the tunnelling of electrons through MBSs. The results of
our numerical analyses are displayed in figures 24,

The graphs in figure 2 show that, for both barrier-type and d-function-type potentials, the
energies €; at which relativistic resonant tunnelling occurs are lower than the corresponding
NR energies E,. Figure 3 shows that the difference AW, = E; —¢, increases with increasing
order s at which resonant tunnelling occurs; this figure also shows that the increase in AW,
with increasing s occurs more for the é-function potential than for the barrier-type potential.

The graphs in figure 4 show that the relativistic full width is smaller than the NR
full width, for all orders s of energies at resonant tunnelling. As a result, the relativistic
transmission spectrum around energies for relativistic resonant tunnelling is sharper than
the corresponding NR spectrum. In view of this situation, the total current transmitied
via relativistic tunnelling is likely to be less than the corresponding current due to NR
tunnelling. We feel that the features shown in figures 2-4, with regard to relativistic impacts
on tunnelling, are likely to be important in connection with solid state devices. The graphs
in figure 2 show that relativistic impacts on energies at resonant tunnelling appear in about
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Figure 4. Variation in 2 AE; and 2 A¢; with the order s of energies at resonant tunnelling for
barrier-type potentials, Both curves correspond fo N = 6 and the fourth bard. Other parameters
for both curves are the same as those for figure 2(b).

the fifth digit. Consequently, the experimental detection of such impacts would be possible
if the barriers are fabricated with high precision and if the energy dependence of resonant
tunnelling is measured with an ultra-high accuracy.

Finally, we would like to highlight our qualitative findings about the domains of energies
at which resonant tunnelling would occur. We consider the case of barrier-type potentials for
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that purpose. As elucidated earlier, these domains for barrier-type potentials are the allowed
regions of band structures of an infinite crystal with rectangular-barrier-type potentials,
having the part @ + b of the finite sysiem as its periodicity, the allowed regions for NR
and relativistic cases comresponding to |d]| < 2 and |dg| < 2, respectively. These features
of resonant tunnelling essentially establish that the tunnelling of electrons through a finite

system has an important linkage with the propagation of electrons through an associated
infinite system.
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